How do strong and weak acids differ? Use lab tools on your …
How do strong and weak acids differ? Use lab tools on your computer to find out! Dip the paper or the probe into solution to measure the pH, or put in the electrodes to measure the conductivity. Then see how concentration and strength affect pH. Can a weak acid solution have the same pH as a strong acid solution?
This set of a teacher and student guides provides instruction on a …
This set of a teacher and student guides provides instruction on a 2-3 day series of activities about Le Chateliers principle, which shows the effect of changes to conditions in an equilibrium reaction. Students work in pairs or groups to develop their concepts of equilibrium and the effects of changing the amount of reactants or products on an equilibrium system. The concepts are presented and analyzed using graphical representations, qualitative lab data, and modelling. The first part addresses the misconception that equal amounts are required for equilibrium through using a mini-activity that involves the transfer of water between beakers. The second part is a lab activity where students will see how an equilibrium system reacts to a change in concentration. The third part uses manipulatives to understand how an equilibrium operates using the mathematical equilibrium constant (Ksp) at the particulate view.
Create your own shapes using colorful blocks and explore the relationship between …
Create your own shapes using colorful blocks and explore the relationship between perimeter and area. Compare the area and perimeter of two shapes side-by-side. Challenge yourself in the game screen to build shapes or find the area of funky figures. Try to collect lots of stars!
Build rectangles of various sizes and relate multiplication to area. Discover new …
Build rectangles of various sizes and relate multiplication to area. Discover new strategies for multiplying algebraic expressions. Use the game screen to test your multiplication and factoring skills!
Remember your multiplication tables? ... me neither. Brush up on your multiplication, …
Remember your multiplication tables? ... me neither. Brush up on your multiplication, division, and factoring skills with this exciting game. No calculators allowed! The students will be given mutiplication and division problems which they must answer. They also have the option of being given a number then stating the factors of how that number was attained using either multiplication or division.
Brush up on your multiplication, division, and factoring skills with this interactive …
Brush up on your multiplication, division, and factoring skills with this interactive multiplication chart. Three levels and timed or untimed options are available.
Explore the interactions between various combinations of two atoms. Turn on the …
Explore the interactions between various combinations of two atoms. Turn on the force arrows to see either the total force acting on the atoms or the individual attractive and repulsive forces. Try the "Adjustable Attraction" atom to see how changing the parameters affects the interaction.
Explore the interactions between various combinations of two atoms. Turn on the …
Explore the interactions between various combinations of two atoms. Turn on the force arrows to see either the total force acting on the atoms or the individual attractive and repulsive forces. Try the "Adjustable Attraction" atom to see how changing the parameters affects the interaction.
Experiment with a helium balloon, a hot air balloon, or a rigid …
Experiment with a helium balloon, a hot air balloon, or a rigid sphere filled with different gases. Discover what makes some balloons float and others sink.
Students explore static electricity by rubbing a simulated balloon on a sweater. …
Students explore static electricity by rubbing a simulated balloon on a sweater. As they view the charges in the sweater, balloon, and adjacent wall, they gain an understanding of charge transfer. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET). The simulations are animated, interactive, and game-like environments.
Look inside a resistor to see how it works. Increase the battery …
Look inside a resistor to see how it works. Increase the battery voltage to make more electrons flow though the resistor. Increase the resistance to block the flow of electrons. Watch the current and resistor temperature change.
Look inside a battery to see how it works. Select the battery …
Look inside a battery to see how it works. Select the battery voltage and little stick figures move charges from one end of the battery to the other. A voltmeter tells you the resulting battery voltage.
Look inside a battery to see how it works. Select the battery …
Look inside a battery to see how it works. Select the battery voltage and little stick figures move charges from one end of the battery to the other. A voltmeter tells you the resulting battery voltage.
The PhET project at the University of Colorado creates "fun, interactive, research-based …
The PhET project at the University of Colorado creates "fun, interactive, research-based simulations of physical phenomena." This particular one deals with Beer's Law. "The thicker the glass, the darker the brew, the less the light that passes through." Make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer! The simulation is also paired with a teachers' guide and related resources from PhET. The simulation is also available in multiple languages.
Explore bending of light between two media with different indices of refraction. …
Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.