Women at NASA are doing some A-MAZE-ING things! Challenge your puzzle skills …
Women at NASA are doing some A-MAZE-ING things! Challenge your puzzle skills and learn about women at NASA making a mark in science, technology, engineering and mathematics. Celebrate their accomplishments with these printable worksheets.
This astronomy program is designed for middle school children in out-of-school-time settings. …
This astronomy program is designed for middle school children in out-of-school-time settings. The program explores basic astronomy concepts (like invisible light, telescopes) and focuses on the universe outside the solar system (stars, galaxies, black holes). The program is structured for use in a variety of settings, including astronomy days, summer camps, or year-long afterschool programs. Although session activities build concepts sequentially, each session activity is designed to be freestanding as not all participants may attend every session. A manual provides background information and descriptions of how to conduct each activity. A companion website provides additional information and resources for the program leader.
This is a book containing over 200 problems spanning over 70 specific …
This is a book containing over 200 problems spanning over 70 specific topic areas covered in a typical Algebra II course. Learners can encounter a selection of application problems featuring astronomy, earth science and space exploration, often with more than one example in a specific category. Learners will use mathematics to explore science topics related to a wide variety of NASA science and space exploration endeavors. Each problem or problem set is introduced with a brief paragraph about the underlying science, written in a simplified, non-technical jargon where possible. Problems are often presented as a multi-step or multi-part activities. This book can be found on the Space Math@NASA website.
This resource provides an explanation of two number/magic puzzles that can be …
This resource provides an explanation of two number/magic puzzles that can be demystified and explained by using algebra. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.
Traditionally, spectral images are two dimensional, and related to text. This kinesthetic …
Traditionally, spectral images are two dimensional, and related to text. This kinesthetic activity has groups of students position themselves along a printed spectrum to make spectral patterns and model various elements. Includes photos, teachers notes and instructions, related resources (e.g., color pdf of a visible light spectra image that can be projected onto a white board or wall to do the activity), and alternative suggestions.
Students will learn about the Transit of Venus through reading a NASA …
Students will learn about the Transit of Venus through reading a NASA press release and viewing a NASA eClips video that describes several ways to observe transits. Then students will study angular measurement by learning about parallax and how astronomers use this geometric effect to determine the distance to Venus during a Transit of Venus. This activity is part of the Space Math multimedia modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school textbooks. The modules cover specific math topics at multiple levels of difficulty with real-world data and use the 5E instructional sequence.
This site shows daily (back to June 16, 1995) a different image …
This site shows daily (back to June 16, 1995) a different image or photograph of the universe along with a brief explanation written by a professional astronomer.
This is a lesson which gives students the opportunity to imagine they …
This is a lesson which gives students the opportunity to imagine they are scientists, provides them with a basic understanding of aurora and helps them to use creative methods in their observations. First, students will study the scientific aspect of the aurora. They will also look at images of the aurora (both pictures and illustrations) and describe what they think of when they see them. These descriptions can be stored in the student portfolios as they will be useful in future lessons. Includes teacher notes and instructions, student workshops and an online, animated story, and related teacher resources on aurora. This is lesson three of a collection of five activities that can be used individually or as a sequence; concludes with a KWL (Know/Want-to-know/Learned) assessment activity.
In this lesson, students will demonstrate their understanding of the aurora by …
In this lesson, students will demonstrate their understanding of the aurora by writing their own poems. Teachers can decide which form(s) of poetry to use from their worksheets or allow students to create their own. Examples of styles include: Acrostic, List, Haiku, Like and As, and May and Could. To help students get inspired, the class will read a poem on the aurora, and they can also look through their portfolios to help form ideas. Includes teacher notes and instructions, student workshops and an online, animated story, and related teacher resources on aurora. This is lesson five of a collection of five activities that can be used individually or as a sequence; concludes with a KWL (Know/Want-to-know/Learned) assessment activity.
This experimental activity is designed to develop a basic understanding of the …
This experimental activity is designed to develop a basic understanding of the interrelationship between temperature and pressure and the structure of a device made to examine this relationship. Resources needed to conduct this activity include two canning jars, two large rubber balloons, a heat lamp or lamp with 150 watt bulb, and access to freezer or water and ice. The resource includes background information, teaching tips and questions to guide student discussion. This is chapter 5 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations.
The purpose of this resource is to quantitatively evaluate the accuracy of …
The purpose of this resource is to quantitatively evaluate the accuracy of a classification system. Students sort birds into three possible classes based on each bird's beak: carnivores, herbivores, and omnivores. Students compare their answers with a given set of validation data.
This lithograph shows the break-off of a large iceberg from the Pine …
This lithograph shows the break-off of a large iceberg from the Pine Island Glacier in West Antarctica. This event occurred between November 4th and 12th, 2001, and provides powerful evidence of rapid changes underway in this area of Antarctica. The images were acquired by the MISR instrument onboard NASA's Terra spacecraft.
This board game challenges players (ages 10+) to build a spaceship and …
This board game challenges players (ages 10+) to build a spaceship and fly to a black hole. The game provides opportunities for understanding phenomena based on current black hole research. During the game, players will experience the dangers and excitement of a real space mission, and learn about the nature of black holes by launching scientific probes. The game can be played competitively or as a team (instructions are also provided for playing in large groups. Black Hole Explorer consists of: Game Board, Game Rules, Spacecraft Data sheets, Science Briefing Room document, Event cards (28), Probe result cards (12), Energy tokens (140). Game components are available as PDF downloads; dice and game pieces must be provided by the user. NOTE: tokens and cards need to be cut to size from letter-size cardstock.
This collection of activities is based on a weekly series of space …
This collection of activities is based on a weekly series of space science problems distributed to thousands of teachers during the 2009-2010 school year. They were intended for students looking for additional challenges in the math and physical science curriculum in grades 9 through 12. The problems were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. The problems were designed to be one-pagers with a Teachers Guide and Answer Key as a second page. This compact form was deemed very popular by participating teachers.
This chapter provides teachers with instructions to install a school weather station, …
This chapter provides teachers with instructions to install a school weather station, and to build simple instruments to monitor weather conditions. Materials need to create a homemade weathervane include a two-liter soft drink bottle, a shallow metal pie pan, a plastic drinking straw, and a compass. Building an anemometer requires plastic cups, soda straws, a pencil with an unused new eraser on the end, a paper punch, and a thumbtack. Thermometers and a rain gauge must be purchased. A data table is included for estimating windspeed using the anemometer. The chapter includes research ideas that allow students to validate their instruments and test the predictive capability of resources such as the Farmer's Almanac. This resource is chapter 15 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The resource includes background information, teaching tips and questions to guide student discussion. This is chapter 15 of Meteorology: An Educator's Resource for Inquiry-Based Learning for Grades 5-9. The guide includes a discussion of learning science, the use of inquiry in the classroom, instructions for making simple weather instruments, and more than 20 weather investigations ranging from teacher-centered to guided and open inquiry investigations.
"Build It Yourself: Satellite!" is an online Flash game hosted on the …
"Build It Yourself: Satellite!" is an online Flash game hosted on the James Webb Space Telescope website. The goal of the game is to explain the decision-making process of satellite design. The user can choose to build a "small," "medium," or "large" astronomy satellite. The user then selects science goals, wavelength, instruments, and optics. The satellite is then launched on the appropriate rocket (shown via an animation). Finally, the user is shown what their satellite might look like, as well as what kind of data it might collect, via examples from similar real-life satellites. Satellites range from small X-ray missions without optics (like the Rossi X-ray Timing Explorer) to large missions with segmented mirrors (like the James Webb Space Telescope).
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.